|
冷知识普及:大家都在吹的第三代半导体,到底是什么玩意?
杰夫视点
发布时间: 09-27
14:43
"金牌宠粉官,带货达人",编辑,优质数码领域创作者
不知道大家最近有没有发现,无论是国内还是国外,在谈到半导体行业的时候,总会冒出一个让人觉得新鲜的名词:第三代半导体。特别是最近我国一些论坛或者峰会上,都说到要在第三代半导体上大力发展,并表示第三代半导体已经进入快速增长期,我们要力争领先地位等等。
这样看起来似乎和标题有点不符:明明第三代半导体都这么热门了,怎么还是冷知识?其实也不难理解,对于普通用户来说,只要产品好用就行,至于几代半导体应该是不在意的。而且你要真问到什么是第三代半导体?或者问不同代半导体的区别是啥?笔者估计大多数人都是懵逼状态,所以说它是冷知识也没错。那么现在我们就来聊聊这个话题,看看全行业都在吹的第三代半导体到底是神马玩意儿!
第一代半导体,让计算机业彻底繁荣
要说到半导体这个名词的出现,那的确是比较久远了。如果追根溯源的话,得说到上世纪的40年代,因为在1940年全世界第一颗电子晶体管诞生了,这也就拉开了半导体时代的大幕。最早大家用于半导体的材料是锗(Ge),如果查看一下半导体的历史,就会发现在上世纪50年代以及60年代,大家的半导体设备基本都是用锗这种材料。所以说锗应该算是半导体材料的老祖先了,这也是我们口中说的第一代半导体。
没错,说到这里,大家应该恍然大悟了:原来不同代半导体的区别就是材料!是滴,但是第一代半导体的材料并不是只有锗,因为大家用锗来打造电子晶体管的时候发现,这货发热有点夸张,还很不好控制,容易引起很多问题,设备出故障是一方面,但是热失控很容易引起重大事故,所以大家开始发展另一种半导体材料——矽,也就是我们说的硅。
知道为啥有一个叫硅谷的地方能被众人看成是科技领域的圣地?现在大家应该明白了,因为在第一代半导体蓬勃发展的时候,矽就是成为了半导体的主要材料,而因为半导体发展而繁荣起来的圣塔克拉拉谷,也就被称为矽谷或者说硅谷了,毕竟硅谷最早是研究和生产以硅为基础的半导体芯片的地方。
一直到上世纪70年代,锗和矽都是半导体的主要材料。不过矽并非万能的材料,毕竟它有自己的物理极限,而且效率和耗电等方面,它已经慢慢无法满足一些科技发展的需求。而这个时候,是化学让半导体时代继续发展,化合物半导体的出现让半导体材料进入了第二代。
第二代半导体,化合物时代来临
之前说过了,当计算机业和电子业发展到一个地步的时候,矽或者说硅的问题就显现出来了,物理极限的问题我们现在都知道,厂商一直追求的能耗比其实已经说明了问题,所以大家都在寻找矽之外的材料来继续发展半导体行业。这个时候化合物半导体终于进入了历史的舞台。
要说化合物半导体,还得感谢赫赫有名的贝尔实验室(不是那个野外求生的贝尔……),在上世纪70年代发明了化合物半导体。从此以砷化镓(GaAs)、磷化铟(InP)为主的化合物半导体一跃成为半导体市场的主角。这两货的优点也很明显,拥有超高的电子迁移率,外加上它们兼备高频、低杂音、高效率及低耗电等特性,简直就是矽的最佳替代者,所以这两种材料一下成为半导体市场的主角。
整个半导体产业因而进入了以这两种材料为主的第二代半导体时代,直到现在第二代半导体材料也大量用于各种半导体器材设备中。由于这两货的功能特点,直接为以后的微波射频通信半导体发展打下了基础,所以我们现在生活的时代得感谢这两种半导体材料,因为大量的射频芯片,都是用这两种材料打造的。
当然第二代半导体材料的问世,并不代表第一代半导体就彻底被淘汰,不同半导体材料现在都可以活跃在不同的领域中。毕竟一些设备和芯片第一代半导体就能搞定,成本还低,不需要第二代半导体或者下面要说的第三代半导体。所以从现在看来,每代半导体材料的发展,并不是取代上一代半导体材料,而是让科技有更好以及更高端的发展。
第三代半导体,催化5G应用加速发展
第三代半导体其实和第二代半导体一样,都属于化合物半导体材料,而且这个材料我们还并不陌生,估计很多人都买过相应材料所制造的产品。比如说充电器,现在很多充电器用的材料都是GaN,也就是氮化镓,而这就是第三代半导体的主流材料。
第三代半导体主要是两种材料,分别是氮化镓(GaN)与碳化矽(SiC)。这两种材料的最大的特点就是宽能隙,而能隙越宽,就代表着其耐高频、高压、高温、高功率及高电流的性能也就越强,同时还具备高能源转换效率与低能耗的特性。这样的特点性能,恰好符合目前IoT设备连接、5G场景及电动车等最新应用的需求。
由于目前各国都在研发5G应用、loT智能设备以及电动车等技术和产品,所以这种宽能隙的材料自然就成为大家发展的重心。行业有一句老话叫“得碳化矽基板者得天下”,由此可见第三代半导体的研发,对于全球科技产业有多么重要。当然之前我们就说过了,三代半导体并非彼此淘汰取代的作用,而是每代半导体材料都在往更先进更高科技的应用领域发展,这不代表老的半导体材料就彻底无用。
比如说第一代半导体的矽,多用在各种处理器、内存芯片、逻辑芯片、微电子晶体管上,我们也比较常见到;第二代半导体的砷化镓则经常用在射频芯片上。至于第三代半导体的材料,主要会采用在高频率的射频元器件以及高功率的半导体元器件上,应用范围则比较广,包括5G、IoT、环保、电动车、卫星通讯及军事等领域。特别是5G和电动汽车,被视为第三代半导体的最大发展动力。
5G和高功率设备,离不开第三代半导体
现在大家应该明白了所谓的第三代半导体是什么意思,粗略地说就是用氮化镓和碳化矽这两种材料打造的半导体设备,就可以算是第三代半导体。当然这其中化合物的发展肯定不止是这两种,但这两种可以算是基础和主流。
那既然说5G、loT设备、电动车都需要第三代半导体,这里就可以举一些具体的例子。比如说5G基站,现在我国采用的Sub-6以及海外已经开始商用的毫米波,它们都需要海量的基础设施,这里就要用到大量的天线和射频元件,而以GaN为主要材料的半导体设备,就能发挥高频、高功率、大频宽、低功耗与小尺寸等优势。
去年全球GaN射频元件的市场为8.91 亿美元,而随着5G在全球的普及,这一市场在2026年将达到24亿美元。目前射频元件部分,很多还是采用的第二代半导体砷化镓以及金属氧化半导体为主材料,而GaN已经成为它们的主要竞争对手。现在GaN射频元件的主要材料是碳化矽基氮化镓GaN-on-SiC,NXP恩智浦半导体已经在去年开设了第一个6英寸的GaN-on-SiC晶圆厂;而过去的全球砷化镓代工大厂,也纷纷开始扩展GaN-on-SiC的产能,希望在未来的竞争中不落下风。
第三代半导体材料的另一个好处,就是非常适合拿来作为功率半导体元件,我们之前已经介绍过它们的特性,耐高温高压、转化率高,所以我们现在看到很多充电器都是用的GaN材料。目前GaN快充已然成为推动GaN功率元件成长的动力,很多手机厂商都已经配备GaN的快充充电器,比如说国内的OPPO就是如此。像小米以及其他外设厂商,也推出了多款GaN材料的充电器。
至于另一种SiC功率元件,目前市场比GaN还大,它和GaN特点相似,两者也经常结合起来为作为不同半导体设备的材料,比如之前介绍的射频元器件。不过SiC自己来做功率元件应用也是很广泛的,比如说作为有61%的SiC功率元件,都用于新能源汽车,另外像太阳能发电站以及各个充电站,也会用到SiC的功率元件。当然综合来看,电动车未来是推动SiC半导体发展的最大动力。
写在最后
关于第三代半导体,我们基本上就说到这里,虽然很粗浅,但是足以让大家了解到第三代半导体的意义,以及他们的特点和现在应用的范围。说实话,半导体虽然经历了三代,但是就和我们说的一样,这三代半导体是基于科技的发展而诞生,而不是说哪一代半导体是从上一代半导体的材料发展而来,所以他们没有互相淘汰的关系,虽然有竞争,但更像是处于平行状态,各自在各自领域发展。
目前第三代半导体发展最快还是中国、美国以及欧盟,特别是我国的科技企业,很早就开始涉足第三代半导体的研发,像比亚迪这样的公司,甚至已经有自己第三代半导体的晶圆厂;包括华为等公司,也在第三代半导体上积极投资。在去年我国第三代半导体的整体产值超过7100 亿人民币,在世界上的确处于领先地位。
对于我国来说,第三代半导体的发展的确相当关键,这不仅仅是因为未来的产业发展和市场有这么大的需求,同时如果在第三代半导体的研发上占据领先位置,也有利于解决我国在半导体上被海外卡脖子的窘境,真正站上半导体强国的位置! |
|